MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Dec 24, 2024), p. n/a
Hovedforfatter: Chergui, Abdelmadjid
Andre forfattere: Bezirganyan, Grigor, Sellami, Sana, Berti-Équille, Laure, Fournier, Sébastien
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
Beskrivelse
Resumen:Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics.
ISSN:2331-8422
Fuente:Engineering Database