MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 24, 2024), p. n/a
Autor principal: Chergui, Abdelmadjid
Altres autors: Bezirganyan, Grigor, Sellami, Sana, Berti-Équille, Laure, Fournier, Sébastien
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics.
ISSN:2331-8422
Font:Engineering Database