MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning
Gorde:
| Argitaratua izan da: | arXiv.org (Dec 24, 2024), p. n/a |
|---|---|
| Egile nagusia: | |
| Beste egile batzuk: | , , , |
| Argitaratua: |
Cornell University Library, arXiv.org
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full text outside of ProQuest |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
| Laburpena: | Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics. |
|---|---|
| ISSN: | 2331-8422 |
| Baliabidea: | Engineering Database |