MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning
Uloženo v:
| Vydáno v: | arXiv.org (Dec 24, 2024), p. n/a |
|---|---|
| Hlavní autor: | |
| Další autoři: | , , , |
| Vydáno: |
Cornell University Library, arXiv.org
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full text outside of ProQuest |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstrakt: | Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics. |
|---|---|
| ISSN: | 2331-8422 |
| Zdroj: | Engineering Database |