Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors vol. 25, no. 14 (2025), p. 4429-4453
Hlavní autor: Lalla Abderraouf
Další autoři: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design.
ISSN:1424-8220
DOI:10.3390/s25144429
Zdroj:Health & Medical Collection