Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

Spremljeno u:
Bibliografski detalji
Izdano u:Sensors vol. 25, no. 14 (2025), p. 4429-4453
Glavni autor: Lalla Abderraouf
Daljnji autori: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
Opis
Sažetak:This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design.
ISSN:1424-8220
Digitalni identifikator objekta:10.3390/s25144429
Izvor:Health & Medical Collection