Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications
Сохранить в:
| Опубликовано в:: | Sensors vol. 25, no. 14 (2025), p. 4429-4453 |
|---|---|
| Главный автор: | |
| Другие авторы: | , , |
| Опубликовано: |
MDPI AG
|
| Предметы: | |
| Online-ссылка: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Метки: |
Нет меток, Требуется 1-ая метка записи!
|
| Краткий обзор: | This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design. |
|---|---|
| ISSN: | 1424-8220 |
| DOI: | 10.3390/s25144429 |
| Источник: | Health & Medical Collection |