Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications
Đã lưu trong:
| Xuất bản năm: | Sensors vol. 25, no. 14 (2025), p. 4429-4453 |
|---|---|
| Tác giả chính: | |
| Tác giả khác: | , , |
| Được phát hành: |
MDPI AG
|
| Những chủ đề: | |
| Truy cập trực tuyến: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Các nhãn: |
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
| Bài tóm tắt: | This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design. |
|---|---|
| số ISSN: | 1424-8220 |
| DOI: | 10.3390/s25144429 |
| Nguồn: | Health & Medical Collection |