Deep Neural Network-Based Design of Planar Coils for Proximity Sensing Applications

Salvato in:
Dettagli Bibliografici
Pubblicato in:Sensors vol. 25, no. 14 (2025), p. 4429-4453
Autore principale: Lalla Abderraouf
Altri autori: Di Barba Paolo, Hausman Sławomir, Mognaschi Maria Evelina
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:This study develops a deep learning procedure able to identify a planar coil geometry, given the desired magnetic field map. This approach demonstrates its capability to discover suitable coil designs that produce desired field characteristics with high accuracy and efficiency. The generated coils show strong agreement with target magnetic fields, enabling manufacturers to achieve simpler structures and improved performance. This method is suitable for inductive proximity sensors, wireless power transfer systems, and electromagnetic compatibility applications, offering a powerful and flexible tool for advanced planar coil design.
ISSN:1424-8220
DOI:10.3390/s25144429
Fonte:Health & Medical Collection